
Real-Time American Sign Language (ASL) Recognition with Visual and
Pose-Based Classification

Armando Borda Elisabeth Holm
Stanford University

aabd@stanford.edu, eholm@stanford.edu

Abstract

American Sign Language (ASL) is essential for commu-
nication in the Deaf community, yet technology struggles
to recognize it accurately in real-world conditions. We de-
veloped and compared two ASL alphabet recognition mod-
els: a YOLOv11-based image classifier and a MediaPipe-
based hand landmark classifier using a PyTorch multilayer
perceptron. We trained both models on three datasets: D1
(controlled conditions), D2 (more diverse), and D3 (a com-
bination of both D1 and D2).

Dataset test performance was nearly perfect for all
models, however, real-time webcam testing revealed weak-
nesses, especially for moving or visually similar letters, as
well as varied lighting conditions. The MediaPipe model
consistently outperformed YOLOv11 in real-time settings,
achieving 64.92% accuracy on D3 compared to YOLOv11’s
61.25%. We also observed improved accuracy as training
data became more diverse, highlighting the importance of
robust datasets.

These findings emphasize the gap between controlled
dataset performance and real-world usability. Insights from
static letter classification can help guide future work on dy-
namic video-based sign recognition, moving towards real-
time translation systems that support full ASL communica-
tion.

1. Introduction

1.1. Motivation

American Sign Language (ASL) is a primary tool for
communication in the Deaf and hard-of-hearing commu-
nity. However, the majority of the population is not fluent
in ASL, creating barriers in education, healthcare, customer
service, and everyday life. Bridging this gap with technol-
ogy could increase accessibility and inclusion.

1.2. Project Objective

In this project, we address the problem of recogniz-
ing static ASL alphabet gestures using deep learning-based
computer vision models. We focus on the classification
of images representing the 26 letters of the ASL alphabet
plus three additional non-alphabet classes (space, delete,
and nothing). The goal is to build a system that performs
robustly on both clean, curated datasets and in real-world
settings, such as real-time webcam input.

We developed and compared two model architectures for
multi-class image classification: one based on object de-
tection with YOLOv11 [2], and another using hand land-
mark detection with MediaPipe [3] combined with a Py-
Torch multilayer perceptron (MLP). We trained these mod-
els on three datasets, which we refer to as D1, D2, and a
combined dataset D3, which merged D1 and D2. We eval-
uated the models’ performance by measuring accuracy on
the datasets and during real-time webcam testing to assess
their usability in live settings.

1.3. Overview of Results

Our results show that both models achieve high accu-
racy on curated datasets, but their performance drops sig-
nificantly under real-world conditions. This highlights the
challenges of generalizing to diverse backgrounds and light-
ing conditions. By combining multiple datasets, we im-
proved real-world accuracy, suggesting that more robust
and diverse training datasets are key for real-world applica-
tions. Across all three datasets, the MediaPipe model con-
sistently outperformed the YOLO model in real-time accu-
racy, indicating that pose-based models are better equipped
to handle variability in real-world settings. Looking ahead,
we propose strategies for further improving generaliza-
tion, such as incorporating additional data sources, and we
outline potential extensions to dynamic video-based sign
recognition using the MS-ASL dataset [4].

1



2. Related Work
To provide context for our work, we use prior research in

the field of ASL recognition. One such study is Live Non-
isolated Sign Language Recognition Using Transformers by
Yang and Farah (2024) [8], which outlines the difficulties
of building a live ASL interpretation system. Their work
shows that accurately classifying individual static letters
of the ASL alphabet is challenging but a necessary foun-
dational step before attempting full sentence translation or
live video interpretation. They experimented with different
model architectures and they concluded that combining Me-
diaPipe for efficient hand landmark detection with Vision
Transformer-based models led to the best results. This com-
bination of lightweight preprocessing and sequence mod-
eling was very good in capturing subtle hand movements
and puts emphasizes on breaking down ASL tasks into more
manageable steps in order to build full translation systems.

Another relevant study we reference is Classifying Sign
Languages and Fingerspellings with Convolutional Neu-
ral Networks by Vu, Chen, and Wong (2022) [7]. This
project focused on recognizing static fingerspelled signs
across multiple sign languages using a two-model pipeline:
they combined a R-CNN-based hand detector with a CNN
classifier, which executed what was called the “crop-and-
classify” approach. The system first detected and cropped
the hand out of the image and then fed it into a classifier that
predicts both the sign language and the letter being signed.
The results showed that the crop-and-classify method was
around four times more accurate than classification with-
out cropping. This finding shows that explicitly detecting
and isolating the hand improves generalization, especially
in settings where there is a lot of image-related noise. This
approach worked really well in low-resource scenarios, sug-
gesting that detection-first pipelines can be more resilient
when working with smaller or more diverse datasets.

Moreover, ElSayed et al presented a more streamlined,
CNN-based approach in their paper Vision-Based Ameri-
can Sign Language Classification via Deep Learning (2022)
[1]. Their work focused specifically on classifying static
ASL alphabet letters using a lightweight convolutional neu-
ral network that avoided the complexity of segmentation or
transfer learning. One of the core strengths of their model
lies is in its simplicity, by not requiring a lot of preprocess-
ing or hardware-intensive methods. To address the common
challenge of limited training data in ASL classification, they
applied multiple forms of data augmentation like Gaussian
noise and rotational transformations. In our case, given our
large access to data, we didn’t focus our efforts in data aug-
mentation.

Our study balances performance with accessibility by
focusing on lightweight models and realistic testing con-
ditions (real-time environment). While many recent ap-
proaches in ASL recognition push toward increasingly

complex architectures or specialized hardware, our goal
was to develop a system that could be accurate and ef-
ficient. By comparing two fundamentally different mod-
els—YOLOv11 for image-based detection and MediaPipe
with a PyTorch MLP for pose-based classification—we
were able to explore trade-offs between computational cost,
real-time performance and robustness.

3. Data

We used three datasets to train and evaluate our ASL ges-
ture recognition models.

The first dataset (D1) is the Kaggle ASL Alphabet
dataset [5], which consists of over 87,000 labeled images of
hands captured through a webcam. These images were cap-
tured under controlled conditions with consistent lighting
and uniform backgrounds, providing clean and high-quality
samples for training. However, this homogeneity posed a
challenge for generalization to real-world scenarios, where
lighting and backgrounds vary significantly. This was par-
ticularly seen in the models’ performance under real-time
video testing, explained later in the report.

To address this limitation, we incorporated a second
dataset (D2) from Kaggle [6], which contains 223,000 la-
beled images of the ASL alphabet captured through a web-
cam, but with greater variation in background, lighting, and
hand positions. We chose this dataset to help the models
learn to recognize gestures under more realistic conditions.

Because both D1 and D2 shared the same classes, we
could combine them into a single dataset (D3) to increase
the overall data diversity and quantity. This combined
dataset allowed us to expose the models to a wider range
of examples during training, helping them generalize better
to real-world inputs.

Since the datasets already included augmented versions
of their images, we did not do any additional data augmenta-
tion or preprocessing, other than changing the filenames of
images to not overwrite each other during the dataset com-
bination process.

4. Methods

We wanted to compare a visual-based approach (YOLO)
with a landmark-based approach (MediaPipe + PyTorch) so
we could evaluate the trade-offs between direct image clas-
sification and landmark feature extraction.

4.1. YOLOv11-based Classification

Our first pipeline uses YOLOv11 [2], a real-time object
detection framework that we chose for its speed and effi-
ciency, which allows for real-time inference. We adapted
the final classification layer to output 26 letter classes +
3 non-alphabet classes (space, delete, and nothing) and

2



trained the model using transfer learning on the ASL Al-
phabet dataset [5]. The training process involved standard
preprocessing, resizing input images, and fine-tuning on our
labeled dataset using the hyperparameters in Table 1.

We trained the model for 20 epochs, which we deter-
mined to be enough after observing that both training and
validation loss plateaued by that stage. Training beyond 20
epochs resulted in diminishing returns and increased risk of
overfitting—particularly for clean datasets like D1. Train-
ing took a total of 3 hours per model, running on a T4 GPU
through Amazon Web Services (AWS).

A batch size of 32 was chosen to strike a balance between
memory efficiency and gradient stability, as smaller sizes
introduced noisier gradients. A size of 32 allowed us to
process multiple examples per batch while keeping training
time reasonable.

We used a learning rate of 1e-2, which is higher than
typical default rates for deeper CNNs but very well-aligned
with YOLOv11’s lightweight structure. Since the model
was already pretrained on ImageNet, a higher learning
rate helped the classifier quickly adapt to the ASL-specific
dataset without getting stuck in suboptimal minima.

The input images were resized to 224x224 pixels. We
specifically used the YOLO11n-cls model: this framework
was 8x faster than the largest one offered by Ultralytics, and
was built with 1.6 million parameters and 0.5 billion FLOP
capabilities.

Hyperparameter Value
Image Size 224
Epochs 20
Batch Size 32
Learning Rate 1e-2

Table 1. Training hyperparameters used in our YOLO model.

4.2. MediaPipe + PyTorch-based Classification

To address the challenge of ASL gesture recognition in
diverse real-world settings, we implemented a model that
uses MediaPipe’s hand landmark detection [3] to extract ro-
bust, position-invariant features from images. MediaPipe
detects 21 key hand landmarks per image, each represented
by 3D coordinates (x, y, z). We stored these landmarks
in JSON files. Landmark extraction was the most time-
consuming part of preprocessing and training, achieving a
processing speed of approximately 27 images per second,
which meant processing Dataset 2 took about 2 hours on a
Macbook with an M1 chip.

After extraction, we flattened the 21 landmarks into a 63-
dimensional feature vector per frame, which was then clas-
sified using a PyTorch-based multilayer perceptron (MLP).
Training was relatively fast given the low dimensionality
of the input feature vectors, taking roughly one minute per
model, again on an M1 chip.

The PyTorch MLP consisted of three fully connected
layers with ReLU activations and a final softmax output
for the 29 gesture classes (26 letters plus space, delete, and
nothing). We tuned the hyperparameters (Table 2) to match
those used in our YOLO-based model where possible, al-
lowing a fair comparison between approaches.

We chose this MediaPipe approach to leverage spatial
rather than visual information, making the model less sen-
sitive to background noise and lighting variations.

Hyperparameter Value
Image Size 224
Epochs 20
Batch Size 32
Learning Rate 1e-3

Table 2. Training hyperparameters used in our MediaPipe model.

4.3. Real-Time Testing

To evaluate our models in a realistic scenario, we imple-
mented a real-time testing pipeline using OpenCV and the
computer webcam feed to continuously capture and pro-
cess frames. We found this to be an especially crucial
step in testing after seeing a large discrepancy between the
dataset and real-time inference accuracy for the initial mod-
els, which were just trained on D1.

For the MediaPipe-based model, we first passed the im-
age through the pre-trained hand landmark detection model.
Then, the resulting 21 hand landmarks were again flattened
into a 63-dimensional vector and passed through our trained
PyTorch classifier to predict the corresponding ASL letter.

For the YOLO-based model, the input frame was passed
directly through the trained YOLO classifier. In our real-
time script, we captured continuous frames using OpenCV
and ran YOLO inference on each frame to identify the pre-
dicted ASL class, with the model returning the top predicted
class along with a confidence score.

We tested each letter class by capturing 150 frames (at 30
frames per second for 5 seconds) per letter, moving around
our hand during each letter to test various angles, positions,
and lighting. The program waited until the user pressed a
key before continuing to the next letter, allowing time to
transition their hand from one letter to the next. At the
end of testing each model on each dataset, the program dis-
played the accuracy for each letter by calculating the per-
centage of correct predictions, which we then averaged to
get the total real-time accuracy.

A demonstration clip of the real-time test for the
MediaPipe-D3 model can be found here.

4.4. Alternative Approaches Considered

We initially considered using only an image-based clas-
sifier (e.g., YOLO) for static ASL alphabet recognition, as

3



YOLO MediaPipe
D1 100% 97.11%
D2 99.90% 97.24%
D3 99.92% 98.49%

Table 3. Accuracies on test data for both the YOLO and MediaPipe
pipelines.

it would be the simplest solution. However, given the high
similarity among certain ASL letters and the variability of
real-world, we hypothesized that using hand landmark fea-
tures could provide better generalization. This is why we in-
corporated the MediaPipe-based approach. We also consid-
ered integrating temporal information (e.g., dynamic video-
based classification) for continuous gesture recognition but
deferred that extension to future work due to the time con-
straints of the quarter.

5. Experiments

5.1. Dataset Results

Both of our pipelines achieved near-perfect accuracy on
testing data for all three datasets, as shown in Table 3. These
results indicate that the models are very capable of distin-
guishing between ASL letters under controlled conditions.
Additionally, for YOLO, we performed sample predictions
by selecting random images, passing each one through the
model, and printing the predicted label, true label, and con-
fidence score. All the predicted labels were correct and the
confidence score ranged from 98.99% to 99.99%. This fur-
ther showed that the dataset prediction task didn’t present
major challenges to YOLOv11.

However, the discrepancies in real-time accuracies show
that we must be cautious, not relying solely on dataset ac-
curacies before deploying applications to the real world.

5.2. YOLO Real-Time Results

After running the real-time test of the YOLO models
trained on D1, D2, and D3, we calculated the per-letter ac-
curacy, with a comparison of model results shown in Fig-
ure 1. The exact numerical per-letter accuracies are in Ap-
pendix A.1.

For the real-time testing, we experimented by varying
three aspects of the hand language gestures we showed: the
position in front of the camera, the angle, and slight dif-
ferences with finger positioning (while still representing the
same sign). Ilumination also played a big factor. With the
real-time test, we could assess not just static dataset perfor-
mance but also practical usability in live settings.

To summarize, D1 was greatly outperformed by D2 and
D3 trained models. The D1-trained model for the YOLO
Real-Time experiment performed very poorly with multi-
ple letters, including P, Q, R, S, T, where it’s accuracy was

Figure 1. Per-Letter Realtime Accuracy for the YOLO model
trained on D1, D2, and D3.

near 0%. The D2 model saw drastic improvement, obtain-
ing an accuracy of 80% or higher for 10 letters. The D3-
trained model improved from the D2-trained model but not
as much as the change from using D1 to D2: although only
9 letters received an accuracy of 80 percent or higher, over-
all it received higher scores by obtaining a total accuracy
of 61.25% compared to the 60.44% of D2. This difference
was marginal compared to the very poor 26.71% accuracy
of the D1 trained model.

Some exceptions where the D1-trained model outper-
formed the other two was for the letter M and N. Mean-
while, the D2-trained model performed the best for the let-
ters C, E, G, H, Q, U, V, W, X, Y, Z, del and space. How-
ever, the difference between some of the letter accuracies
between D2 and D3 when D2 had a higher accuracy was
small (a couple of percentage points); The D3 model, when
it had the highest accuracy for a letter, sometimes outper-
formed by a much larger amount.

5.3. MediaPipe Real-Time Results

Similarly to YOLO, after running the real-time test of
the MediaPipe models trained on D1, D2, and D3, we cal-
culated the per-letter accuracy, with a comparison of model
results shown in Figure 2. The trendlines are running av-
erages of accuracies, and while the horizontal trend doesn’t
mean much, the vertical stack shows an overall ranking of
the models with D3 performing best, then D2, then D1 last.
Again, the exact numerical per-letter accuracies are in Ap-
pendix A.1.

As we can see, D3 significantly outperformed D1 and D2
on most letters, except for S and U, which performed better
under D1 and D, E, K, M, and T, which performed better
under D2. D2 and D3 performed comparably for some let-
ters, likely due to D2 making up a majority of D3. Some
letters, such as C saw a 9̃0% increase in real-time accuracy
from D1 to D3, aligning with our hypothesis that a more ro-
bust dataset would increase real-time accuracy by increas-
ing generalizability.

Certain letters still presented challenges. For example,

4



Figure 2. Per-Letter Realtime Accuracy for the MediaPipe + Py-
Torch model trained on D1, D2, and D3.

Figure 3. Overall Realtime Accuracy for the MediaPipe and
YOLO models trained on D1, D2, and D3.

letters with similar shapes (e.g., M, N, and T) or those with
subtle hand orientations (e.g., Q, P, and Z) showed persis-
tently low accuracy across all datasets.

Some letters, such as B, consistently achieved near-
perfect performance, suggesting that they have distinctive
and easily separable landmark patterns. Since the land-
mark detection model was very good at detecting hands,
the ”nothing” class had 100% accuracy for all models, as
it returned ”nothing” if no hand was detected in the frame.

These results exhibit the importance of dataset diver-
sity and robustness for generalizing to real-world scenarios.
They also illustrate the limitations of using only landmark-
based features, which may struggle with occlusions, left-
handed signs, and sometimes unconventional hand orienta-
tions.

5.4. Comparison of Models

In Figure 3 we see the overall real-time accuracies for
each model trained on each dataset.

We see that the MediaPipe model trained on D1 (the
clean but homogeneous dataset) achieved a total real-time
accuracy of 42.97%, highlighting significant difficulties in
generalizing from clean images to varied real-world condi-
tions. Training on D2 improved the overall real-time ac-
curacy to 58.30%. The best performance was from D3,
the combined dataset, with a total real-time accuracy of

64.92%.
In comparison, the YOLO-based model achieved even

lower real-time performance on D1, with a total real-time
accuracy of only 26.71%. This result highlights the YOLO
model’s sensitivity to domain shift, likely due to its reliance
on raw image features rather than the abstracted hand land-
marks used by the MediaPipe model. Training on D2 im-
proved YOLO’s real-time accuracy to 60.44%, and on D3 to
61.25%, showing a similar trend to MediaPipe in benefiting
from more diverse training data.

YOLO’s overall performance consistently lagged behind
the MediaPipe model across all datasets, suggesting that
landmark-based approaches may be better suited to this
task, especially in real-world conditions with varied light-
ing and backgrounds.

6. Conclusion
In this project, we explored the challenge of Ameri-

can Sign Language (ASL) letter recognition using both a
YOLO-based image classification model and a MediaPipe-
based landmark detection approach. Our experiments
demonstrated that while both models performed well on cu-
rated, static datasets, real-time testing revealed significant
drops in accuracy, particularly for letters with similar hand
shapes (such as ‘M’ and ‘N’) or those involving motion
(such as ‘J’ and ‘Z’). This highlights the importance of test-
ing in realistic, dynamic environments rather than relying
solely on static datasets.

We found that incorporating additional data diversity
by combining datasets significantly improved real-time
performance, exhibiting the need for models that can
generalize across a range of lighting conditions, back-
grounds, and hand variations. Our MediaPipe-based land-
mark model consistently outperformed the YOLO-based
approach across all datasets, suggesting that pose-based
methods offer better robustness to background noise and
lighting changes.

While visual-based models like YOLO show promise,
they may benefit from further preprocessing steps such as
cropping to the hand region before classification as to miti-
gate their sensitivity to background clutter.

6.1. Future Work

Future work could explore several promising directions.
First, incorporating hand detection and cropping in the
YOLO pipeline could improve performance by reducing
background noise. Second, extending the system to han-
dle dynamic gestures, such as ‘J’ and ‘Z’, would require
integrating temporal information, for example by using se-
quence models or recurrent architectures. Third, expanding
the dataset with additional real-world variations, including
different lighting, backgrounds, skin tones, and camera per-
spectives, would help improve generalization. Incorporat-

5



ing multi-angle training data would also be a big boost, ei-
ther through more diverse dataset collection or through syn-
thetic data generation (e.g., using 3D hand models to simu-
late rotations).

Insights from our tests on static images can inform future
work on dynamic sign recognition. Specifically, combining
pose-based features with temporal models (e.g., LSTMs or
Transformers) could help the system track hand motion over
time, enabling classification of continuous ASL word signs
and phrases. Ultimately, we envision a world with real-time
translation systems that support full ASL communication to
bridge the gap between the deaf and hearing communities.

References

[1] Elsayed et al. 2024. “Vision-Based American Sign Lan-
guage Classification Approach via Deep Learning.”
Arxiv. https://arxiv.org/abs/2204.04235.

[2] Jocher, Glenn, and Jing Qiu. 2024. Ultralytics YOLO11.
https://github.com/ultralytics/ultralytics.

[3] Google. 2019. MediaPipe.
https://ai.google.dev/edge/mediapipe/solutions/vision
/hand landmarker.

[4] Microsoft. 2024. “MS-ASL Ameri-
can Sign Language Dataset.” July 15,
2024. https://www.microsoft.com/en-
us/download/details.aspx?id=100121.

[5] Nagaraj, Akash. 2018. “ASL Alphabet.” Kaggle.
https://www.kaggle.com/grassknoted/asl-alphabet.

[6] Sau, Debashish. 2021. “ASL(American Sign
Language) Alphabet Dataset.” CS231N.
https://cs231n.stanford.edu/reports/2022/pdfs/23.pdf.

[7] Vu at al. 2022. “Classifying Sign Lan-
guages and Fingerspellings with Convolu-
tional Neural Networks.” Semantic Scholar.
https://api.semanticscholar.org/CorpusID:273696110.

[8] Yang, Daniel and Ethan Farah. 2024. “Live
Non-isolated Sign Language Recognition
Using Transformers.” Semantic Scholar.
https://api.semanticscholar.org/CorpusID:273696110.

Appendix A
A.1. MediaPipe and PyTorch D1, D2, and D3 Model
Accuracies Per-Letter for Real-Time Testing

Per-Letter Accuracy (num correct/150 tested frames) for
each class and each model. We assigned colors based on
the accuracy values, grouped by the tens place (eg 0%-10%,
10% - 20%, etc). The bar graphs in Figure 1 and 2 show
the same information, but this shows the numerical detail.

6


